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A method of reducing a number of diffraction problems to a system of one-dimensional integro-differential equations is proposed 
based on the method of discontinuous solutions [1, 2] in the case of steady elastic waves. The defect can be either a spherical 
crack or a thin rigid spherical inclusion. The method is descn'bed in detail for the second case. An effective approfimate method 
of solving the corresl:,anding integro-differential equation in the class of functions with non-integrable singularities is proposed 
in the case of the diffraction of a torsional wave. A numerical realization of the method is given, namely, graphs of the reactive 
torsional moment (the inclusion is rigidly fixed) as a function of the oscillation frequency and dimensions of the inclusion are 
drawn, and the same graphs for the amplitude of the torsional oscillations of the inclusion when it is mobile (not fixed). O 1997 
Elsevier Science Ltd. All rights reserved. 

1. C O N S T R U C T I O N  O F  A D I S C O N T I N U O U S  S O L U T I O N  O F  T H E  W A V E  
E Q U A T I O N  F O R  A S P H E R I C A L  D E F E C T  

We mean by a defect [1, 2] part of a surface, on intersecting which the displacements and stresses undergo 
discontinuities of the first kind. A typical defect is a mathematical cut on a certain part of the surface 
(a crack). Another case of a defect is a thin rigid inclusion in the form of a shell, the median surface 
of which coincides with the same part of the surface. Here we are considering the case when the defect 
is part of a spherical surface: r = R, 0 ~< 0 ~< o, -n  ~< tp ~< 7t where r, 0, ¢p are spherical coordinates. We 
know [3, 4] that the solution of the equations of motion of an elastic isotropic medium can be expressed 
in terms of wave functions. Hence, before constructing the discontinuous solution of the equations of 
motion we will construct such a solution for the wave equation 

A~-c-2~SI-2 ~ = 0 ,  0<r<** ,  0 < 0 < n ,  Itpl<n, t~>0 (1.1) 
o /  

where A is the Laplace operator in a spherical system of coordinates. 
We mean by a discontinuous solution of Eq. (1.1), specified over the whole of space, for a spherical 

defect 

r=R,  0<~0<~,-n<<-~p<<.n (1.2) 

the solution of Fh: 1. (1.1) which satisfies it everywhere, apart from the points of the defect (1.2). At 
these points the function and its normal derivative (to the surface of the defect) undergo discon- 
tinuities of the first kind and their sudden changes are specified, for which we introduce the following 
notation 

tb(R - 0, 0, tp, t) - ~ ( R +  0, 0,q~, t) = (0) 

O'(R-O,O, tp, t )-eo'(R +O,O, tp, t) = ( 0 ' )  

Here and everywhere below the derivatives with respect to r will be denoted by a prime, the derivative 
with respect to 0 will be denoted by a dot, and the derivative with respect to tp will be denoted by a 
comma. To consu~act this solution we will use the same scheme as in [1, 2]. Applying integral and Fourier 
transformations 
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eov = ~O(r'O'qLt)e-mdt'o Op, = ~ -!n OP(r'O'ro)e-i"*dtP (1.3) 

and a Legendre transformation (P~k (cos 0) is the associated Legendre polynomial) 

Op,k(r) = I sinO~ "l(c°se)do (1.4) 
0 

in succession to Eq. (1.1) we can reduce this equation to the following one-dimensional equation 

-2r 2 , k(k+l)~p,k ] Ov.~=O , 0 < r < o ~  (1.5) r [(r Opnk)'-- - -  p2c-2 

It is required to construct a discontinuous solution of this equation with specified abrupt changes 

= 0 ) -  + O) 

(1.6) 
=.;°,  (R- +o) 

To do this, we reduce Eq. (1.5) to the Bessel equation by making the substitution {Pp,a, (r) = r~t/~r). 
We then apply an integral Hankel transformation 

q~ t,.~a = 7 rJk.~ (Otr)tPpnk(r)dr 
0 

to this using the generalized scheme in [1]. We thereby obtain the Hankel transformant of the discon- 
tinuous solution of Eq. (1.5) with abrupt changes (1.6). Then applying the inversion formula for the 
Hankel transformation and also formula 6.541(1) from [1] from 5, we obtain the required discontinuous 
solution of Eq. (1.5) with abrupt changes (1.6) 

*t,,k (r) = R2[(O'pnk>Fk(r,R)-(O'pnk> Fk(r, R) 

Fk(r'R)="~llv(r@)Kv(_~_), 

v = k + ~ ,  k = 0,1,2 .... 

r>R 

r<R 
(1.7) 

(Iv(z) is the modified Bessel function and Kv(z) is the MacDonald function). In order to obtain a discon- 
tinuous solution of the initial wave equation, we must use the inversion formulae for the Legendre 
transformant [6] 

Op.(r,O)= ~. Opnk(r)aknP2nl(COSO) 
k=l"l 

~k, = (k-I nl ) !(2k + l)[2(k+l nl ) !]-' 
(1.8) 

and also for the Fourier and Laplace transformants. 
For example, using (1.8) instead of (1.7), we obtain 

0 
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K.(O,x,r,R)= ~ P~"'(cosO)P~"'(cos'U 
,=,., [ o , . r , ( r ,  R)]-' 

If the oscillation process described by wave equation (1.1) is steady, i.e. it occurs harmonically 

- t O J ( l t  - O(r,O, cp, t)=e O(r,O, cp) (1.10) 

to eliminate the time there is no need to employ the Laplace transformation, and for the functions 
~(r, 0, ~) we obtain Eq. (1.5), in which we must p u t p  = -/too. 

The discontinuous solution in this case, instead of (1.7), will have the form 

6 . , ( r )  = R2[(dO'.k)Fa.,(r.R)-(O.k)~RFa,k(r.R) ] 

~1) r ~i fJv(Rd)H~ (d). r> R 
ra, , (r, R)= ~ ~[ Jv(rd)ncv"(Rd), r < R 

2 v = 2 k + l ,  d = c-I~00 

(1.11) 

or, after inverting the Legendre transformant 

+n(r,O.)= R2[~ (+'n)sin~K~(O,~;r,R)d~- 
1_o 

-~[o (+.)sinz ~---RK~(O,,;r,R,dz] (1.12) 

K d (0. ~; r, R) ~. In~ fnl " = 6,,F,I.~(r,R)P~ (cos0)Pt~ (cosx) 
k=lnl 

In order to sati:~fy the radiation condition at infinity, when substitutingp = -/E% into (1.7) we chose 
the first Hankel fimction/-/{~)(x). 

When using discontinuous solutions (1.9) and (1.12) in particular problems, an integral representation 
is required for the function 

. ,  (1)1= 

Bk(z )= Iv(z)Kv(z)l ,~ tony q = ~ = A,(~) ,  v = ~ + ~  
z = -  2 j  v (~) 

(1.13) 

to obtain which it :is sufficient to use formula 5.9.2(14) from [7], which gives an expansion of the function 
D~(0) = I0(0) - L0(0) (L0(0) is the second Struve function [5]), in series in an orthogonal system of 
functions cos[(k + 1/2)0] and therefore 

- (-1)~ ~ f~o(2Z cos O)cos[(k  + 1 )0 ]do  8k(z ) - - -~ - -  ° 

By integration by parts using (1.13) we establish 

Ak(~)=l-Ak(~) Ak(~)=i sin[(k+~)0] /~ ( O) 
2k + l ' o ( - l )  k i90 O° 2~cos dO (1.14) 

where 0o(0) = Jr(O) -iHo(O), Ho(O) is the first Struve function. 
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2. C O N S T R U C T I O N  OF A D I S C O N T I N U O U S  S O L U T I O N  OF T H E  
E Q U A T I O N S  OF M O T I O N  OF AN E L A S T I C  M E D I U M  F O R  A 

S P H E R I C A L  D E F E C T  

We will use the well-known solution of the equations of motion of an elastic isotropic medium [3], 
expressed in terms of three wave functions ~(r, 0, (p, t), hUj(r, 0, (p, t), (j = 1, 2) where the first function 
gives the expansion wave and satisfies wave equation (1.1), in which c = ca, and the other two give the 
shear wave, and we must put c = c2 in (1.1) where Cl and c2 are the velocities of the expansion and 
shear waves, respectively. If we have in mind steady harmonic oscillations with frequency coo ([~, ~gj] = 
e -/'~°t [~, ~/]), changes to Fourier transformants 

1 i -intO" e L~,Wj,Ur,Uo,%]d(p, n = 0, +l,:t.2,. (2.1) 

and omit the time factor exp(- /~t )  and the tilde over the symbols everywhere, the solution can be written 
in the form 

u,,, = ~ ,  - (r  sin 0)  -I [sin 0 ~P2. ]" - (r sin 2 0)-7 n2~P2 n m u n 

u0n = r-I~n + r -n (r~P2.)' +in(sin 0) -u ~ n , ,  =- on 

u~  = (rsin 0) -7 indP n + (rsin 0) -I in( raP2n)" - Wi~ - w n 

Here the functions On and ~Pj~ will satisfy the Helmholtz equations 

r-2 [(r2 (* : .  ~P;n ] ) ' -  Vn[*n, ~Pjn ]]+(a2dpn,b2~p)n] = 0 

Vn f ( r ,O)  =- n 2 sin -20f(r,O) - sin -I O[sin Of (r,O)] 

a = 000c/I , b = O~oC~ 1 

(2.2) 

(2.3) 

(2.4) 

Using Hooke's  law and the Cauchy relations, we obtain from the transformants of the displacements 
(2.2) the transformants of the stresses [3] 

2 t I t  • I t s  

(2~) -n On, = ~ - k(2g) -I a2O,  + b2W2n + b r~2n + 3W2n + rVP2n 

(2g) -7 "Crn = r-I~'n " - r-2~'n - ~ in r(sin 0) -7 (r-IWnn)" + ~ + r-IW~n - r-2W2n + )/2 b2W2n 

(2.5) 
-(2It)  -I Z ~  = in(rsin 0) -7 [O'n - r - t~n  ] + ~ r(r-ltPin )' + 

+in(sin0)-I[W~ + r-nW~, -r-2~P2n + I/2b2~2n ] 
where Ix, k are the Lam6 parameters, and x0n and x~ are the Fourier transformants of the shear stresses 
x,~ and x,~, respectively. 

We will mean by a discontinuous solution of the equations of motion of an elastic medium for a 
spherical defect (1.2) the solution of the equations which satisfies these equations everywhere, apart 
from the points of the defect. At these points the components of the displacement and stress field 
undergo discontinuities of the first kind with specified jumps. We will introduce the following notation 
for the Fourier transformants of these jumps 

(2.6) 

This discontinuous solution will be constructed using the scheme described in [1, 2]. Here it is more 
convenient to introduce the following notation instead of v., w~ and x0,,, %,  

sin 0z . ( r ,0 )  = [sin 0v~(r,0)]  - inw. (r ,O)  

sin 0Zn(r ,0)= [sin 0 wn(r,0) ] + i n v . ( r , O )  

sin 0 x, (r,0) = [sin 0x0, (r,0) ]" - inx~, (r ,O)  

sin O'~* ( r , O ) =  [sin 0 ~ (r, O)]' + in'%.(r,O) (2 .7)  
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Taking (2.4) into account we can obtain the following relations from (2.2) 

u , ( r ,0)  = q~( r ,0 )  + r-IV,~P2,(r,0 ) 

z: (r, 0) = VnV, n (r, 0); r'z n (r, 0) = -Vn [O n (r, 0) + (r~2n (r, 0))'] (2.8) 

According to [1, 2], it is necessary to express the jumps in the functions (On), ( ~ ) ,  (~Fj,), ~F~,,) in terms 
of the specified jumps (2.6) or the jumps of  the functions (2.7). Changing in (2.2) to jumps and carrying 
out the necessary combinations in order to obtain the jumps of the functions (2.7), we obtain the relations 

( . .)  = ( . : ) +  (z:)-- v . (v , . )  
(2.9) 

= -v , [ (v . )+  R<v , >1 
In order to obtain similar relations for the stresses, in (2.5) we must eliminate terms containing 

derivatives with respect to r higher than the first order. To do this we use EClS (2.3), which enables us 
to write 

~ , '  = r-2V,O, _ 2r-IO~, _ a2O, 

~Y;'n = r-2Vn~Yj, - 2r-I~P;, -b2Ulj,, j = l , 2  

Using these formulae to eliminate the derivatives from (2.5) and changing to jumps in the stresses 
(2.6), including aim the jumps in x*~ and %, we obtain 

(21a) -I (O=)R 2 = V~ (O , )  - 2R(~  n ) - ~ b2R 2 (e#,) + RVn (V~,) - V, (~P2,) 

RrL -~ ( t")  = V ,  [ R(%', ) - (+~,)1 

21~-'(~*)R2 = - V * { R ( e p " ) - ( e P ' ) + V ' ( V x ' ) - ~ b 2 ( ' ~ 2 * ) - R ( ~ 2 ~ ) - ( q ' 2 " ) }  (2.10) 

In order to invert relations (2.9) and (2.10), i.e. to obtain from them the jumps in the wave functions, 
we apply the integral Legendre transformation (1.4) to them, and, after some reduction, we obtain 

k(k + l)('t'~,k)= (z~)." k(k +1)(%',~) = R -~ (z,k)+l~" -J (~,~)" 

k( k + l )b 2 R(~Y2,k ) = ~t-I R('c nk ) + 2k( k + l)(u,k ) + 2( znk ) 

-Rb2(~P'~ ) = 4(unk ) + 2(z*k ) + ~-t R(a '~  ) (2.11) 

R2b 2 ( ¢ [ ~ )  = [b2R 2 - 2k(k + l)](u,~ ) - ~-IR(xnk ) - 2(Z,~ ) 

k( k + 1)b2R 2 (U~n t ) = 2(Unk )k( k + 1) - [j.-I R(,t, k ) + 

+(z,~ )[2k(k + 1) - 2 - b2R 2 ] + I.t -I Rk(k + l)((tr, ~ ) 

By (1.11) the Fourier-Legendre transformants of the wave functions can be expressed by the formulae 

aP,~ (r) = R2[(ep',~ )Fa.k (r,R)-(eP,~ ) - ~  F,, k (r,R)] 

u~,~(r)=R2[(~;, ,)Fb.,(r,R,-(~P, nt)~R['b.,(r,R,], j e t , 2  (2.12) 

Substituting the values of the jumps (2.11) here and then inverting the Legendre transformation, using 
(1.8) we obtain the functions On and ~Fn, and from them, using (2.2) and (2.5), we obtain the required 
discontinuous solution of the equations of motion for a spherical defect (1.2). Having the discontin- 
uous solution, we can easily reduce the problem of diffraction by such a defect to one-dimensional 
integral or integro-differential equations. We will carry out the appropriate operations as they apply 
to a defect in the form of a thin spherical inclusion. 
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3. R E D U C T I O N  OF THE PROBLEM OF THE D I F F R A C T I O N  OF AN 
ELASTIC WAVE BY A THIN S P H E R I C A L  INCLUSION TO THE 

I N T E G R O - D I F F E R E N T I A L  EQUATIONS 

Suppose the defect is a thin inclusion in the form of a thin rigid spherical shell, the median surface 
of which is fixed by relations (1.2). We will assume that the inclusion is perfectly bonded to the elastic 

O medium. Suppose a steady elastic wave is incident on this inclusion and causes strains u~, u~, u~ and 
stresses t~, x ~  x~0 in the elastic medium, the Fourier transformants of which will be denoted by the 
number n in the subscript of a symbol, in accordance with (1.3), while the Fourier transformants of the 
combinations (2.7) of these strains and stresses will be denoted by z~z~*, x°~, ~*. Here, if instead of 
an incident elastic wave, the elastic medium is subjected to bulk forces, which vary with time as exp 
(-/coot) (this is the version of the problem which we will also have in mind), we will use the same notation 
for the corresponding amplitudes of the stresses and strains caused by this loading. 

The stress and strain fields in the elastic medium due to this loading will be constructed in the form 

o 

Ur~(r,O)=u~n(r,O)+u~n(r,O), Uon =u0~ +u~n u~ =u~ +u~ (3.1) 

where u~, u~, u ~  are the displacements due to the specified load of the elastic medium when there 
1 1 is no defect, and ul,n, u0n, u~ is the discontinuous solution constructed in Section 2. It was constructed 

for a defect of general form. In the case of the defect considered here in the form of an inclusion perfectly 
bonded to the elastic medium, the jumps in the strains in (2.6) should be zero, and hence 

<u~>, <ook), (wnk>, <z,k>, <z~k)=0 

Consequently, we obtain from (2.11) 

<'e~k > = o, t (k  + 1) ( v ( ~  > = l~ -~ <x~k > 

k(k + l)b 2 (tP2nk)=la-I<~.~), b2 <tYPnk ) = - l l - l  ((Irnk ) 

b2R<¢,'~k>=-rt-~<x~k), k~k + l)b2RO'~k ) = ~t-~[k~k + I ) (~ r~) -  <x,k )] 

(3.2) 

Substituting these expressions into (2.12) and inverting the Legendre transformants, we obtain 

R 2 
~Y, . ( r .0 )=- -  ~ (x~)sinxK."(0.~; r.R)dx 

I1 o 

~ttP2.(r,0)=~-2 { ! (Or.)sinTK/~(0, X; r,R)dx- 

- !  xI K , (0, "c; (x~>sin r.R,+ R-~ K~(O,'c;r,R)]dx} 

O~(r'O)=M--~ ~ sinz[r~-~Ka(O'~;r'R)(Orn)-Ka(O'z'r'R)<~'n}] " " " 

(3.3) 

The kernels K] and K~ are found from (1.12) for d = a and d = b, respectively, while the kernel K~. 
is obtained from the same formula but with Fd. k replaced by [k(k + 1)]-lFbj,. Hence, in the case under 
discussion in representation (3.1) the functions u 1, u 1,  u ~  will be found from (2.2) and (3.3). 

In order to obtain the equations for determining the unknown jumps (ore), (x,,) and (x~) we must 
specify the conditions on the defect (the inclusion). If it is assumed to be fixed, the following conditions 
must be satisfied 

un(R-O,O)=v.(R-O,O)=w.(R-O,O)=O, 0 ~  < 0 ~  < to  

or, taking (2.7) into account, the conditions 

u . ( R - 0 , 0 ) = z ~ ( R - 0 , 0 ) = z ' ~ ( R - 0 , 0 ) = 0 ,  O<~O<~to (3.4) 
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Specifying these conditions using (2.9) and (3.1), we reduce the problem to the following system of 
integro-differential equations 

R~, ( r ,e )  I,=R_0 +V~W2~(R-0,0)= -Ru°(R,O) 
2 

Vn{dPn(R-O,O)-[r tF2nfr, O) ] Ir=R_o}=Rz°(Roe) 

V~FI.(R-O,O)=-ze'(R,O), O<~O<~to 

(3.5) 

(3.6) 

As can be seen, the last equation can be solved independently of the previous ones, while the first 
two must be solved simultaneously. 

We will give further details of the proposed method as it applies to the case when the incident wave 
is a torsional wave. 

4. THE P R O B L E M  OF THE D I F F R A C T I O N  OF AN ELASTIC 
T O R S I O N A L  WAVE BY A THIN S P H E R I C A L  INCLUSION 

We will take the incident torsional wave in the form 

0 =ArsinO~ibrcosO A=const, uOo _ o ----Ur0 ------0 U~0 (4.1) 

Since there is axial symJnetry, we must put n = 0 in all the previous formulae. If we take into account 
the differential equation which the associated Legendre polynomials Plkn I(cos e) satisfy, it can be shown 
that the following equalities hold 

Vn~nl(cose) = k(k + l)~nl(cosO) 

V nKn. (O, X; r, R) = K~(O,x; r, R) (4.2) 

We obtain the L, ltegral equation for the problem in question from Eq. (3.6) by using (2.7), (3.1), (3.3) 
and (4.2) and putting n = 0 

0 L [ w°(tg~ e' tg~ 2 c°s~Oc°s~2xx)- Do(cosO, cosx)])C(x)sinxdx=2 f(O) (4.3) 

W,~(x,y) = ~ Jm(tx)Jm(ty)dt, f(O) = Ala(i~sin 2 e -  2cosO)e '~;c°s°, 0 <~ e <~ to (4.4) 
0 

O,(x,y)= ~. P~(x)P~(Y)Ak(~) ~=bR, m=0,1,2 .... (4.5) 
k=m (k + m).~(k - m)l] -l ' 

where the unknown function, by (2.7) and (3.3), is 

1 
x(e) = (%(R,e)) = 

sine 
d (x,~(R,e)) (4.6) 

When obtaining Eq. (4.3) we took into account, using (1.12) and (1.11), that 

K°(e,x; R-0 ,R)=-~R ~. a,(~)(2k+l)P,(cosO)Pk(cosx) 
k=0 

and we also used representation (1.14) and the results obtained in [2] on the summation of series in 
associated Legendre functions. 

If we make the following substitution in (4.3) 

tg~e=l~x,  lg~x=l]y,  13=tg~t~, X(y)= X(2arctg~y) 
(! + 152y 2 )Y2 (4.7) 
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• D,( l-r2 l-s2) 
[ ( l + r 2 ) ( l + s 2 ) ] N R o ( r , s )  = o i+r2, i~s2, F(x )=  

we obtain the well-known equation [1] 

f (2  arctg l~c) 

21$41 +[32x 2 

I 

I [Wo(x,Y)-~3Ro(~X,~Jy)IX(Y)dy=F(x) , O~ < x ~  1 (4.8) 
o Y 

which has been solved by many researchers, but in the class of integrable functions. However, here we 
must solve it in the class of functions having non-integrable singularities, since the required function 
in Eq. (4.3), from which (4.8) is obtained, is, by (4.6), the derivative with respect to 0 of the stress jump 
,v(r, 0). This jump at the edge of the inclusion 0 = co has a root singularity and, consequently, its 
erivative with respect to 0 will have a power singularity with index -3/2. 

Equation (4.8) was solved previously in [8] in the class of such functions. Below we propose another, 
more direct method based on a new eigenvalue relation 

i Wm(x,y)p~.-~(l_2Y2)dy = F(m+k+~2)F(k_~2)x 
I y-,,-I )~ 2k! o (1 _y2 

[xmpkm_2~(l_2x2)F_l(k+m) ' 0~<x<~l (4.9) 

X J F ( m + k + Y 2 , k + ~ ;  2 k + m + ~ ;  x-2) 
[ F(~ -k)F(2k+m+~2)x2k+s+t I < x < ~,,, m =0.1,2 .... 

Here we must assume P~_hl:2(1 - 2x 2) - 0 for k = 0 and the integral must be understood in the 
generalized (regularized [9, 1]) sense. Relation (4.9) is proved using the scheme developed in [10]. 

Having the eigenvalue relation (4.9), to solve integral equation (4.6) we can use the orthogonal 
polynomial method [1], i.e. we search for a solution in the form of a series 

X(y)= Y. Xk( l -y2 ) -~Pk° ' -N(1-2y  2) (4.10) 
k;0 

After substituting this series into (4.8) we must take into account that, by the considerations presented 
in [8], the following condition must be satisfied 

I 

J°(x)xdx<**, J°(x)  = I Wo(x,y)yX(y)dy 
I 0 

An analysis of the integral J °(x) using relation (4.9) as x --¢ oo and x ~ 1 + 0 shows that only the first 
term of series (4.10) does not satisfy this condition and it must therefore be discarded, i.e. series (4.10) 
must be taken in the form 

X(y)-- ~. Xt+l(l-y2)-NPt°+'(N(l-2y 2) (4.11) 
1=0 

Carrying out the standard scheme of the orthogonal polynomial method [1], we reduce the integral 
equation (4.8) to an infinite system 

Yj -i~=o ~]NjNtajat = ~ ,  j=O,l  .... (4.12) 

Here 

Yi =a/NjajXj÷t ' 2at =F(l+~)r(l+3/2)[l!(l+l)!l -t 

N? 'f~ = j [Pta'¢ (I - 2y2 )2y2a+' (l - y2 )l~ dy = 
0 

= F(a+l+i)F([~+l+l)[2(a+~+21+l) l !F(a+~+l+l)]  -I, Nt°.~J = N t 

(4.13) 
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F/=~ xF(x) pj0.~ (1 _ 2x2)dx = F/o., ~ (4.14) 
0 (1 - x 2)-~ 

djt = i J PT'~(I - 2x2)Pt°+';"~(l- 2Y2)}R°(~Jx'~y)dxdy (4.15) 
0 0 (1 - x2)-)~ (1 - y2)~J (xy) -I 

The last integral must be understood in the generalized (regularized) sense. Using (4.7) and (4.5) it 
can be reduced to the form 

dfl ~ k,I k,l+l = Ak (~)ly~.o.o (13)1_y2,o,o (1~) (4.'16) 
k=0 

k,n l II--~2X2 1 l+" 2X2 . .°y'~(l -- PnO'q(l-2x2)xdx - = 
tq'p'r(~)-~ ~O Pk (r.2X2)_r (1+,~2'X~_ X2) q 

. t~20+r) 
= ,~, ( - 1 ) '  ( - i  - r )  p c i 

i=0 (i+r)! -I n!F(2+n+i+r+q) 
, 

Ci---- 
m_-0 ~,-"~.~ J (i-m)! 

When evaluating the last integral an expansion in a Maclaurin series in I]x is carried out, which depends 
on this variable, using formulae 8.962(1) and 9.121(1) from [5], and formula 7.391(4) from [5] is then 
used. 

The coefficients Ak(~) must be calculated from (1.14) using well-known power expansions [5] for the 
Bessel and Struve functions, and also the tabulated integrals 3.632(17) from [5]. The coefficients F/must 
be calculated using the well-known expansion [11] 

Ei~cos.0 = ~, pk(cos0)(2 k + l)etaa/2jk+~(~ ) 
k=O 

We then obtain, using (4.14), (4.7) and (4.4) 

2 ~ F / - -  AIX~/-~'k~ 0 (2k + 1)ekVa't2Jl+)~(~)[4iE, i~!2.,(~)-2I~l.O(~)+ 21~{i.1 (~) ] (4.17) 

We will solve the infinite system (4.13) approximately by the reduction method, the basis of which 
will be given below. 

If we assume the inclusion to be fixed, an important characteristic is the reactive torque 

O) 

Mo = 2nR3 S (x~(R,0)) sin2 0d0 (4.18) 
0 

From (4.6) we can establish the equation 

sin0(x~(R,8)) = [ sinx)~(x)dz 
0 

Substituting this expression into (4.18), integrating by parts, replacing the variables (4.7) and using 
(4.11), taking (4.13) into account, we obtain the formula 

Mo=167tRa~4~ (1+1)-I ~, (-l)'+:(J+l)!Z[32t (4.19) 
t=o ~/Nt(~t j=l (j-l)!(~+l)i+ 2 

We will now consider the case when the inclusion is not fixed and can rotate due to the action of 
the incident wave. We will.denote the amplitude of the angle of rotation by a. In this case the conditions 

I 0 imposed on the defect (1.2) must be changed and written as follows: z0 (R, O) + z0 (R, O) = 2o, Rcos 0. 
Substituting z0 from (2.8) here, as previously, we obtain integral equation (4.3), where instead o f f  (°) 
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we must take the sum f(0) + og(0),g(0) = 2~t cos 0, and, correspondingly, we obtain the infinite system 
(4.13) in which instead ofF/, we must take the sum Fj + otGj, where 

}.t i ( l - ~ 2 x 2 ) p ? ' ~ ( l - 2 x 2 ) x d x  
G j = - ~  0 = (1 - x 2 )-Y2 (I + [~2x2 )¥2 (4.20) 

_ 13.  ~ (--l)k(-~2)k _ ( - k ) ! k r  
213j! k=~0 [ ~-2kk! (%-132e/c+l)' et' (~+J)k+a 

The structure of the solution of the infinite system will be similar, i.e. Yj = yj0 + otY~, where Y~j is 
the solution of the previous infinite system (4.13), while Y~is the solution of system (4.](3), where we 
must take G; from (4.20) instead of the coefficients Fj. 

t The reactive torque M for the inclusion will be found from the formula M = M 0 + tzM a, where M 0 
and Ma are calculated from (4.19) with Y1 replaced by y0 and Y t  ~, respectively. Using d'Alembert 's 
principle, we obtain the following expression for the amplitude a of the terminal oscillations of the 
inclusion 

ct = ( M,o - Mo )M~ I (4.21) 

where M= = -lff,020Polr)n 3 (to - sin co cos to) is the torque due to the inertial forces, ~ is the thickness of 
the inclusion and P0 is its density. 

5. T H E  BASIS OF T H E  R E D U C T I O N  M E T H O D  
AND N U M E R I C A L  R E S U L T S  

According to the well-known results in [12], the reduction method for solving infinite system (4.12) will be usable 
if we can prove that the following series converge 

Idfll2 " IFjl2 " IF?'~I2 (5.1) 

To prove this we will introduce the Fourier coefficient in the expansion of the integrable function h(x) in Jacobi 
polynomials P~P(1 - 2.x 2) in the interval [0, 1] 

I 
h~ '~ = l h(x)e~ 'fj (l - 2x2 )x2a*l  ( t -  x 2 )~ dx (5.2) 

o 

Nm 

lO-J 

, ,  

I0-¢ 

0 50 f, k ~  0 20 ~0 k ~  

Fig. 1. Fig. 2. 
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If the function is continuously differentiable in the interval [0, 1], we will denote the Fourier coefficient in this 
expansion of the function x-ih (x) by #1, ~a. If we now carry out integration by parts in (5.2), taking into account the 
relation 

i Pna'13(l-2~2)~d~ x2a+2P~-+ll'll+l(l-2x2) 
0 [~2tl(I-~2)13 ] -I = 2n ( I -x2 )  -13-1 n > 0  

which follows from A6.12 of [1], we can establish that 

h~ 'fi = -(2n)-I  "n-I/:~+l'll+l (5.3) 

These operations ha obtaining (5.3) are justified if Re (a, 13) > -1. They are also justified when ll = -3/2 by virtue 
of considerations presented in [13, 1]. 

We will prove the convergence of the second series in (5.1). 
Taking into account the fact that, by virtue of (5.3), we can write the relation Fj °'vz = (2j)-lff~:l 3t2, this series can 

be rewritten in the form 
Fo°' J~ i/~/.~l 2 

$2= + '7 
N0~0 to=0 2(k+l)Nt<+l~k+l 

The convergence of the last series can be established if we use the Parseval equation [14] 

IF/"~ll2 = i F'(x)x3dx 
'7 NI~ ~,-x~) -~ k=0 0 

The integral on the right exists by virtue of (4.7) and (4.4), which define the function F(x). 
To prove the convergence of series Sl in (5.1), we will represent it in the form of two series 

s , :  s °, + s:, s ° :  o;' 
t=0 NoaoNt 

s l :  Fr ,<tj, 
j=i l=0 NjNlaj 

We introduce the following notation 

~,o(x,y)= ~, v ,,OtV.~,v:,j 

xy Oxt)y 0 Y 

I i el ,~t l_2x2)pt l . -~( l_2y2)dxdy 
cllt=[. I [%(x,y) 

0 0 ( I - x 2 ) - ~  l-~-~y2x-3y -3 

Using (4.7), (4.5) arid (5.3) we have the equations 

-- ~ ^ tr.,~o ¢1-~  2x2 "l. (1--132y 2 R0(~tx,i3y)- L. ~ k t b S r / / 7  i r k / ~ /  
t :0  t i + p ' x "  J t l+13"y" ) 

dj-I,I 
dfl = 2(l + l)2j 

13 02R0(13x,13y) ~).-I/2(x): I / ~Ro(~x,~Y)pti'-~(I-2y2)dy 
/)yaJl - y2 y-3 

(5.4) 

(5.5) 

(5.6) 

Using the above notation we obtain the Parsevai equation 

1 I [1 ~3RO(l~x,~y)l 2 y3dxdy I 

s s 1  -:7777:,=o o o  o 

l - y  3 3 .f I I ~ ( / , y ~  i ~]~-----L I- Idkt 12 y ~ r - -  x N.._~N,Z ~ ;  
(5.7) o o ! l - x  j.k=O 

where the double integrals in (5.7) exist. This follows from representation (5.6) for R0(~, 13y), from which it can 
be seen that the function R0(~, 13y) will be continuously differentiable if Ak (~) = O(k -m) and k ~ ** and m > 4. 
We can obtain this a,3,mptotic form for ak (~) if we carry out integration by parts the required number of times in 
(1.14) and bear in mind that Qo(z) is an integral function. 
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In order to show that series S~ from (5.4) converge, it is sufficient to pu t j  -- k+ 1 in its representation and use 
the second equations in (5.6) and (5.7). To prove that series ~ from (5.4) converges, using the representation for 
djt from (4.15) and the Cauchy-Bunyakovskii inequality, we can establish the relation 

l 2dx 
30(/+1)2 0 

which, in combination with the first equation of (5.7), guarantees that the series S°1 converges. 
When calculating the reactive torque from (4.19) and the amplitude of the torsional oscillations of the inclusion 

from (4.21), the input parameters were fixed as follows [4]: the inclusion was made of steel of thickness 8 = 5 x 
10 -4 m, radius R = 0.02 m, and density P0 = 7900 kg/m 3, while the material of the elastic medium was calcite with 
a shear wave velocity c2 = 1113 m/s and a Lam6 parameter p = 3.58 x 109 MPa, and the amplitude of the incident 
waveA = 0.01 m. 

In Figs 1 and 2 we show graphs of the reactive torque M0 and the logarithm of the amplitude a of the oscillations 
of the inclusion as a function o f f  = t00/(2rt); curve 1 corresponds to to ~ 36 ° and I~ = 0.32. 

This research was carried out  with the assistance of the Internat ional  Source Programme for support ing 
educat ion  in the exact sciences of the In te rna t iona l  "Regene ra t ion"  Founda t ion  (ISSEP, S P U O  41053). 
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